Large Characteristic Subgroups

Università degli Studi

di Napoli Federico II

Marco Trombetti

Advances in Group Theory and Applications 2019

Lecce — 26 June 2019

Let G be a **group**.

Let G be a **group**. Let H be a **subgroup** of G

Is it possible to find a **normal** *subgroup of* G *having* **finite index** *and satisfying the same* **properties**?

Is it possible to find a **normal** *subgroup of* G *having* **finite index** *and satisfying the same* **properties? Yes!**

Is it possible to find a **normal** *subgroup of* G *having* **finite index** *and satisfying the same* **properties? Yes, in most cases.**

Is it possible to find a **normal** *subgroup of* G *having* **finite index** *and satisfying the same* **properties? Yes, in most cases.**

The **trivial** subgroup in finite groups.

Let G be a group.

Let H be a subgroup of G having finite index in G and satisfying some group theoretical property.

Is it possible to find a **normal** *subgroup of* G *having* **finite index** *and satisfying the same* **properties? Yes, in most cases.**

Proposition Let G be a group having a subgroup H of finite index , then H contains a normal subgroup of finite index.

Let G be a group.

Let H be a subgroup of G having finite index in G and satisfying some group theoretical property.

Is it possible to find a **normal** *subgroup of* G *having* **finite index** *and satisfying the same* **properties? Yes, in most cases.**

Proposition Let G be a group having a subgroup H of index n, then H contains a normal subgroup of index at most n!.

Is it possible to find a **characteristic** *subgroup of* G *having* **finite index** *and satisfying the same* **properties**?

Is it possible to find a **characteristic** *subgroup of* **G** *having* **finite index** *and satisfying the same* **properties**?

Definition A subgroup H of a group G is said characteristic when $\alpha(H) = H$ for all $\alpha \in Aut(G)$.

Question Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H?

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index?

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index?

How do we use the answers?

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index?

How do we use the answers?

• Normality is **not** a transitive relation in general.

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index?

How do we use the answers?

- Normality is **not** a transitive relation in general.
- Characteristicity **compensate** for the lack of transitivity.

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index?

How do we use the answers?

- Normality is **not** a transitive relation in general.
- Characteristicity **compensate** for the lack of transitivity.

 $K \textit{ char } H \triangleleft G \implies K \triangleleft G$

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index?

How do we use the answers?

- Normality is **not** a transitive relation in general.
- Characteristicity **compensate** for the lack of transitivity.

$$\mathsf{K} \textit{ char } \mathsf{H} \triangleleft \mathsf{G} \implies \mathsf{K} \triangleleft \mathsf{G}$$

• If A is an **abelian** subgroup of finite index in an infinite normal subgroup H of a group G, does G have a normal non-trivial **abelian** subgroup?

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index?

How do we use the answers?

- Normality is **not** a transitive relation in general.
- Characteristicity **compensate** for the lack of transitivity.

$$\mathsf{K} \textit{ char } \mathsf{H} \triangleleft \mathsf{G} \implies \mathsf{K} \triangleleft \mathsf{G}$$

• If A is an **abelian** subgroup of finite index in an infinite normal subgroup H of a group G, does G have a normal non-trivial **abelian** subgroup?

• Is abelianity F-characteristic?

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

1979-1972 Abelianity

Let G be a group with an abelian subgroup A of finite index, then G contains a characteristic abelian subgroup of finite index.

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G:H|.

1979 – 1972 Abelianity Let G be a group with an abelian subgroup A of finite index, then G contains a characteristic abelian subgroup of finite index.

1:
$$A^{char} = \langle A^{\alpha_1}, \dots, A^{\alpha_n} \rangle$$
, where $\alpha_1, \dots, \alpha_n \in Aut(G)$

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index?

Set n = |G : H|.

1979 – 1972 Abelianity Let G be a group with an abelian subgroup A of finite index, then G contains a characteristic abelian subgroup of finite index.

1:
$$A^{char} = \langle A^{\alpha_1}, \dots, A^{\alpha_n} \rangle$$
, where $\alpha_1, \dots, \alpha_n \in Aut(G)$
2: $\bigcap A^{\alpha_i} \leq Z(A^{char})$

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G:H|.

1979-1972 Abelianity

Let G be a group with an abelian subgroup A of finite index, then G contains a characteristic abelian subgroup of finite index.

1:
$$A^{char} = \langle A^{\alpha_1}, \dots, A^{\alpha_n} \rangle$$
, where $\alpha_1, \dots, \alpha_n \in Aut(G)$
2: $\bigcap A^{\alpha_i} \leq Z(A^{char})$
3: $Z(A^{char})$ *char* G

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

1979-1972 Abelianity

Let G be a group with an abelian subgroup A of finite index, then G contains a characteristic abelian subgroup of finite index.

1:
$$A^{char} = \langle A^{\alpha_1}, \dots, A^{\alpha_n} \rangle$$
, where $\alpha_1, \dots, \alpha_n \in Aut(G)$
2: $\bigcap A^{\alpha_i} \leq Z(A^{char})$
3: $Z(A^{char})$ *char* G
bound $- n^n$

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2008 Abelianity

Let G be a finite group with an abelian subgroup A of index n, then G contains a characteristic abelian subgroup of index at most n^2 .

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G:H|.

2008 Abelianity

Let G be a finite group with an abelian subgroup A of index n, then G contains a characteristic abelian subgroup of index at most n^2 .

2017 Abelianity

Let G be any group with an abelian subgroup A of index n, then G contains a characteristic abelian subgroup of index at most n^2 .

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

1938 Nilpotency

Let G be a group with a **nilpotent** subgroup of finite index, then G contains a characteristic nilpotent subgroup of finite index.

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2004 Bruno & Napolitani Let G be a group with a nilpotent subgroup of finite index having class c. Then G has a characteristic nilpotent subgroup of finite index and of class at most c.

bound $-c = 2: (n^{2n})$

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2004 Bruno & Napolitani Let G be a group with a nilpotent subgroup of finite index having class c. Then G has a characteristic nilpotent subgroup of finite index and of class at most c.

2018 Let \mathfrak{X} be an F-characteristic group class which is S_{π} , H and R_0 -closed. Then the class of all **central-by-\mathfrak{X}** groups is F-characteristic.

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2007 Solubility Let G be a group having a soluble subgroup of finite index and with defect d. Then G contains a characteristic soluble subgroup of finite index having defect at most d.

bound
$$2^{f^{2^d}-1}(\log_2(n!))$$

 $f(x) = x(x+1)$

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G:H|.

2007 Solubility Let G be a group having a soluble subgroup of finite index and with defect d. Then G contains a characteristic soluble subgroup of finite index having defect at most d.

2007 Verbal properties Let θ be an outer commutator word. Then the variety $W(\theta)$ is an F-characteristic group class.

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2007 Verbal properties Let θ be an outer commutator word. Then the variety $W(\theta)$ is an F-characteristic group class.

2018 Union *A union of* F-characteristic group classes is F-characteristic.

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2007 Verbal properties Let θ be an outer commutator word. Then the variety $W(\theta)$ is an F-characteristic group class.

2018 Union *A union of* F-*characteristic group classes is* F-*characteristic.*

2018 Corollary

The class of groups with a nilpotent commutator subgroup is F-characteristic.

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2018

The class of groups with a **locally nilpotent** *commutator subgroup is* F-*characteristic.*

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2018

The class of groups with a **locally nilpotent** *commutator subgroup is* F-*characteristic.*

2018 The following group classes are F-characteristic

• The class of Baer groups and the class of Gruenberg groups

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2018

The class of groups with a **locally nilpotent** *commutator subgroup is* F-*characteristic.*

- The class of Baer groups and the class of Gruenberg groups
- \bullet The classes ${\mathfrak N}$ and ${\mathfrak N}_1$

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2018

The class of groups with a **locally nilpotent** *commutator subgroup is* F-*characteristic.*

- The class of Baer groups and the class of Gruenberg groups
- The classes \mathcal{N} and \mathcal{N}_1
- The class of Fitting groups

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2018

The class of groups with a **locally nilpotent** *commutator subgroup is* F-*characteristic.*

- The class of Baer groups and the class of Gruenberg groups
- The classes \mathcal{N} and \mathcal{N}_1
- The class of Fitting groups
- The class of soluble groups with bounded Fitting length

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2018

The class of groups with a **locally nilpotent** *commutator subgroup is* F-*characteristic.*

- The class of Baer groups and the class of Gruenberg groups
- The classes \mathcal{N} and \mathcal{N}_1
- The class of Fitting groups
- The class of soluble groups with bounded Fitting length
- The classes of paranilpotent, supersoluble, locally supersoluble and hypercyclic groups

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? . . . and maybe even get a bound for the index? Set n = |G : H|.

2018

The class of groups with a **locally nilpotent** *commutator subgroup is* F-*characteristic.*

- The class of Baer groups and the class of Gruenberg groups
- \bullet The classes ${\mathfrak N}$ and ${\mathfrak N}_1$
- The class of Fitting groups
- The class of soluble groups with bounded Fitting length
- The classes of paranilpotent, supersoluble, locally supersoluble and hypercyclic groups
- The classes of finite-by-abelian groups, finite-by-(nilpotent of bounded class) groups, . . .

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

Is it possible to find a characteristic subgroup of G having finite index and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2018 The following group classes are not F-characteristic

• The class of free (abelian) groups

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

- The class of free (abelian) groups
- The class of torsion-free (abelian) groups

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

- The class of free (abelian) groups
- The class of torsion-free (abelian) groups
- **Swan** Any torsion-free group containing a free subgroup of finite index is likewise free

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

- The class of free (abelian) groups
- The class of torsion-free (abelian) groups
- The class of non-trivial simple groups

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2017 *The class of* **periodic quasihamiltonian** *groups is* F-*characteristic.*

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2017

The class of **periodic quasihamiltonian** *groups is* **F***-characteristic.*

Definition

A group G is quasihamiltonian whenever $\mathsf{HK}=\mathsf{KH}$ for each H, $\mathsf{K}\leqslant\mathsf{G}.$

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2017

The class of **periodic quasihamiltonian** *groups is* **F***-characteristic.*

2018 *The class of* **quasihamiltonian** *groups is* **F***-characteristic.*

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2017 *The class of* **periodic quasihamiltonian** *groups is* F*-characteristic.*

2018

The class of quasihamiltonian groups is F-characteristic.

2018

The class of groups with **modular subgroup lattice** *is* F*-characteristic.*

Is it possible to find a **characteristic** subgroup of G having **finite index** and satisfying the same **properties** of H? ... and maybe even get a bound for the index? Set n = |G : H|.

2017

The class of **periodic quasihamiltonian** *groups is* **F***-characteristic.*

2018

The class of **quasihamiltonian** *groups is* **F***-characteristic.*

2018

The class of groups with **modular subgroup lattice** *is* F*-char- acteristic.*

2018 Intersection

The intersection of two F-characteristic group classes closed by taking subnormal subgroups is F-characteristic

A group G is a **T-group** if normality is a transitive relation in it.

A group G is a **T-group** if normality is a transitive relation in it.

A group G is a **T-group** if normality is a transitive relation in it.

Definition *A group* G *is a* **T-group** *if normality is a transitive relation in it.*

• Simple groups are T-groups.

Definition *A group* G *is a* **T-group** *if normality is a transitive relation in it.*

- Simple groups are T-groups.
- Finitely generated soluble T-groups are either finite or abelian.

Definition *A group* G *is a* **T-group** *if normality is a transitive relation in it.*

- Simple groups are T-groups.
- Finitely generated soluble T-groups are either finite or abelian.
- Soluble T-groups are metabelian.

A group G is a T-group if normality is a transitive relation in it.

- Simple groups are T-groups.
- Finitely generated soluble T-groups are either finite or abelian.
- Soluble T-groups are metabelian.

2018

If G is any soluble T-group, then any subgroup containing the $Fit(G) = C_G(G')$ is characteristic in G.

2018

The class of **periodic** *soluble* **T***-groups is* **F***-characteristic.*

A group G is a $\overline{\mathsf{T}}$ -group if normality is a transitive relation in each subgroup of G.

A group G is a \overline{T} -group if normality is a transitive relation in each subgroup of G.

• Locally soluble \overline{T} -groups are either periodic or abelian.

A group G is a $\overline{T$ -group if normality is a transitive relation in each subgroup of G.

• Locally soluble \overline{T} -groups are either periodic or abelian.

2018

If G is a group having a subgroup of finite index which is a periodic T-group, then it also contains a characteristic subgroup of finite index which is \overline{T} -group.

A group G is a \overline{T} -group if normality is a transitive relation in each subgroup of G.

• Locally soluble \overline{T} -groups are either periodic or abelian.

2018

If G is a group having a subgroup of finite index which is a periodic T-group, then it also contains a characteristic subgroup of finite index which is \overline{T} -group.

Corollary

The class of soluble \overline{T} -groups is F-characteristic.

Non-periodic soluble T-groups

Non-periodic soluble $\top\text{-}\mathsf{groups}$

type 1: non-periodic Fitting subgroup

Non-periodic soluble T-groups

type 1: non-periodic Fitting subgroup

• they contains an abelian subgroup of finite index

Non-periodic soluble \top -groups

type 1: non-periodic Fitting subgroup

• they contains an abelian subgroup of finite index

type 2: periodic Fitting subgroup

Non-periodic soluble T-groups

type 1: non-periodic Fitting subgroup

• they contains an abelian subgroup of finite index

type 2: periodic Fitting subgroup

• the set of all elements of finite order is a subgroup

Non-periodic soluble T-groups

type 1: non-periodic Fitting subgroup

• they contains an abelian subgroup of finite index

type 2: periodic Fitting subgroup

- the set of all elements of finite order is a subgroup
- the commutator subgroup is divisible

Non-periodic soluble ⊤-groups

type 1: non-periodic Fitting subgroup

• they contains an abelian subgroup of finite index

type 2: periodic Fitting subgroup

- the set of all elements of finite order is a subgroup
- the commutator subgroup is divisible

• Let G be a group containing a subgroup X which is a soluble T-group of type 2. Then X' is characteristic in G.

Non-periodic soluble T-groups

type 1: non-periodic Fitting subgroup

• they contains an abelian subgroup of finite index

type 2: periodic Fitting subgroup

- the set of all elements of finite order is a subgroup
- the commutator subgroup is divisible

• Let G be a group containing a subgroup X which is a soluble T-group of type 2. Then X' is characteristic in G.

 \bullet Let X be a subgroup of finite index of a soluble T-group of type 2, and let T be its periodic part. Then T ' is characteristic in G.

Non-periodic soluble T-groups

type 1: non-periodic Fitting subgroup

• they contains an abelian subgroup of finite index

type 2: periodic Fitting subgroup

- the set of all elements of finite order is a subgroup
- the commutator subgroup is divisible

• Let G be a group containing a subgroup X which is a soluble T-group of type 2. Then X' is characteristic in G.

• Let X be a subgroup of finite index of a soluble T-group of type 2, and let T be its periodic part. Then T' is characteristic in G.

• Let X be a subgroup of finite index of a soluble T-group of type 2. Then X is also a T-group of type 2 and X' = G'.

Let G be a group containing a subgroup X of finite index which is a soluble T-group of type 2.

Let G be a group containing a subgroup X of finite index which is a soluble T-group of type 2. If X has finite torsion-free rank

Let G be a group containing a subgroup X of finite index which is a soluble T-group of type 2.

- If X has finite torsion-free rank or,
- X' has finite sectional p-rank for each prime p,

Let G be a group containing a subgroup X of finite index which is a soluble T-group of type 2.

- If X has finite torsion-free rank or,
- X' has finite sectional p-rank for each prime p,

then G contains a characteristic subgroup of finite index which is a soluble T-group of type 2.

Let G be a group containing a subgroup X of finite index which is a soluble T-group of type 2.

- If X has finite torsion-free rank or,
- X' has finite sectional p-rank for each prime p,

then G contains a characteristic subgroup of finite index which is a soluble T-group of type 2.

Corollary

The class of soluble T-groups of finite torsion-free rank is F-characteristic.

Let G be a group containing a subgroup X of finite index which is a soluble T-group of type 2.

- If X has finite torsion-free rank or,
- X' has finite sectional p-rank for each prime p,

then G contains a characteristic subgroup of finite index which is a soluble T-group of **type 2**.

Corollary

The class of soluble T-groups of finite torsion-free rank is F-characteristic.

Example

There exists a metabelian group containing a subgroup of finite index which is a T-group of type 2 but no characteristic subgroup of finite index with the T-property.

Thank you all!

Large Characteristic Subgroups

Università degli Studi

di Napoli Federico II

Marco Trombetti

Advances in Group Theory and Applications 2019

Lecce — 26 June 2019